使用flink SQL Client将mysql数据写入到hudi并同步到hive

测试环境

组件版本

首先请确保以下组件正常启动:

  • mysql

  • hivemetastore

  • hiveserver2

  • hdfs

  • yarn

hudi适配hive 3.1.2源码编译

0.9.0版本的hudi在适配hive3时,其hudi/package/hudi-flink-bundle/pom.xml文件使用的flink-connector-hive版本有问题,所以需要修改pom文件。

修改点一:

143行,修改为:

<include>org.apache.flink:flink-sql-connector-hive-${hive.version}_${scala.binary.version}</include>

642行,修改为:

<artifactId>flink-sql-connector-hive-${hive.version}_${scala.binary.version}</artifactId>

编译命令:

mvn clean install -DskipTests -Pflink-bundle-shade-hive3 -Dhadoop.version=3.2.0 -Dhive.version=3.1.2 -Pinclude-flink-sql-connector-hive -U -Dscala.version=2.12.10 -Dscala.binary.version=2.12

将编译后得到的hudi/package/hudi-flink-bundle/target/hudi-flink-bundle_2.12-0.9.0.jar拷贝到flink/lib目录下,将得到的hudi/package/hudi-hadoop-mr-bundle/target/hudi-hadoop-mr-bundle-0.9.0.jar拷贝到hive/auxlib目录下,如果没有这个目录则新建一个即可。

关于flink操作hudi的相关方法如果有疑惑的可先看本系列的其他文章,例如使用flink插入数据到hudi数据湖初探Flink SQL Client实战CDC数据入湖等。

生成测试数据

使用datafaker生成100000条数据,放到mysql数据库中的stu4表。

datafaker工具使用方法见datafaker — 测试数据生成工具

首先在mysql中新建表test.stu4

create database test;
use test;
create table stu4 (
  id int unsigned auto_increment primary key COMMENT '自增id',
  name varchar(20) not null comment '学生名字',
  school varchar(20) not null comment '学校名字',
  nickname varchar(20) not null comment '学生小名',
  age int not null comment '学生年龄',
  score decimal(4,2) not null comment '成绩',
  class_num int not null comment '班级人数',
  phone bigint not null comment '电话号码',
  email varchar(64) comment '家庭网络邮箱',
  ip varchar(32) comment 'IP地址'
  ) engine=InnoDB default charset=utf8;

新建meta.txt文件,文件内容为:

id||int||自增id[:inc(id,1)]
name||varchar(20)||学生名字
school||varchar(20)||学校名字[:enum(qinghua,beida,shanghaijiaoda,fudan,xidian,zhongda)]
nickname||varchar(20)||学生小名[:enum(tom,tony,mick,rich,jasper)]
age||int||学生年龄[:age]
score||decimal(4,2)||成绩[:decimal(4,2,1)]
class_num||int||班级人数[:int(10, 100)]
phone||bigint||电话号码[:phone_number]
email||varchar(64)||家庭网络邮箱[:email]
ip||varchar(32)||IP地址[:ipv4]

生成10000条数据并写入到mysql中的test.stu3表

datafaker rdb mysql+mysqldb://root:Pass-123-root@hadoop:3306/test?charset=utf8 stu4 100000 --meta meta.txt 

datafaker工具有详细使用方法,请参考。

导入mysql数据

使用flink sql client进行如下操作

构建源表

create table stu4(
  id bigint not null,
  name string,
  school string,
  nickname string,
  age int not null,
  score decimal(4,2) not null,
  class_num int not null,
  phone bigint not null,
  email string,
  ip string,
  PRIMARY KEY (id) NOT ENFORCED
) with (
  'connector' = 'jdbc',
  'url' = 'jdbc:mysql://hadoop:3306/test?serverTimezone=GMT%2B8',
  'username' = 'root',
  'password' = 'Pass-123-root',
  'table-name' = 'stu4'
);

构建目标表

 create table stu4_tmp_1(
  id bigint not null,
  name string,
  `school` string,
  nickname string,
  age int not null,
 score decimal(4,2) not null,
  class_num int not null,
  phone bigint not null,
  email string,
  ip string,
  primary key (id) not enforced
)
 partitioned by (`school`)
 with (
  'connector' = 'hudi',
  'path' = 'hdfs://hadoop:9000/tmp/stu4_tmp_1',
  'table.type' = 'COPY_ON_WRITE',
  'write.precombine.field' = 'id',
  'hive_sync.enable' = 'true',
  'hive_sync.mode' = 'hms',
  'hive_sync.metastore.uris' = 'thrift://hadoop:9083',
  'hive_sync.jdbc_url' = 'jdbc:hive2://hadoop:10000',
  'hive_sync.table' = 'stu_tmp_1',
  'hive_sync.db' = 'test',
  'hive_sync.username' = 'hive',
  'hive_sync.password' = 'hive'
  );

插入数据

insert into stu4_tmp_1 select * from stu4;

hive数据查询

使用hive命令进入hive cli

执行如下命令查询数据

select * from test.stu_tmp_1 limit 10;

结果:

使用flink SQL Client将mysql数据写入到hudi并同步到hive

5 1 投票
文章评分

本文为从大数据到人工智能博主「xiaozhch5」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://lrting.top/backend/2052/

(6)
上一篇 2021-11-12 20:30
下一篇 2021-11-12 21:29

相关推荐

订阅评论
提醒
guest
3 评论
最旧
最新 最多投票
内联反馈
查看所有评论
trackback
6 月 前

[…] 温馨提示要完成如下任务,请确保已经使用其他方法将hudi数据同步到hive中。如果没有同步hive数据,可参考文章:使用flink SQL Client将mysql数据写入到hudi并同步到hive。并且,以下内容中的presto查询,即是基于上述参考文章所同步的hive表进行查询的,建议可先阅读上述参考文章。以下presto安装以单节点为例。 […]

AVATAR🇨🇳
AVATAR🇨🇳
1 月 前

问个问题哈 flink cdc 可以直接同步msyql binlog数据到hive吗

213
213
回复给  AVATAR🇨🇳
1 月 前

可以的

3
0
希望看到您的想法,请您发表评论x
()
x