Flink 提供了 Print SQL Connector 可以让我们非常方便的把数据打印到标准输出.有助于我们测试 SQL 任务,检验数据的正确性.
但是在生产环境中,上游的数据量是非常大的,如果直接把数据输出的话,可能会把标准输出文件打满,造成页面卡死的情况,反而不利于我们观测数据,所以我们可以对 Print SQL Connector 进行简单的改造,加一个随机取样的参数控制数据输出.
直接把 Print SQL Connector 相关的代码复制出来.
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package flink.stream.connector.print;
import org.apache.flink.annotation.Internal;
import org.apache.flink.api.common.functions.util.PrintSinkOutputWriter;
import org.apache.flink.configuration.ConfigOption;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.configuration.ReadableConfig;
import org.apache.flink.streaming.api.functions.sink.PrintSinkFunction;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.flink.streaming.api.operators.StreamingRuntimeContext;
import org.apache.flink.table.connector.ChangelogMode;
import org.apache.flink.table.connector.sink.DynamicTableSink;
import org.apache.flink.table.connector.sink.DynamicTableSink.DataStructureConverter;
import org.apache.flink.table.connector.sink.SinkFunctionProvider;
import org.apache.flink.table.connector.sink.abilities.SupportsPartitioning;
import org.apache.flink.table.data.RowData;
import org.apache.flink.table.factories.DynamicTableSinkFactory;
import org.apache.flink.table.factories.FactoryUtil;
import org.apache.flink.table.types.DataType;
import javax.annotation.Nullable;
import java.util.*;
import java.util.concurrent.ThreadLocalRandom;
import static flink.stream.connector.print.PrintConnectorOptions.PRINT_RATE;
import static org.apache.flink.connector.print.table.PrintConnectorOptions.PRINT_IDENTIFIER;
import static org.apache.flink.connector.print.table.PrintConnectorOptions.STANDARD_ERROR;
/**
* Print table sink factory writing every row to the standard output or standard error stream. It is
* designed for: - easy test for streaming job. - very useful in production debugging.
*
* <p>Four possible format options: {@code PRINT_IDENTIFIER}:taskId> output <- {@code
* PRINT_IDENTIFIER} provided, parallelism > 1 {@code PRINT_IDENTIFIER}> output <- {@code
* PRINT_IDENTIFIER} provided, parallelism == 1 taskId> output <- no {@code PRINT_IDENTIFIER}
* provided, parallelism > 1 output <- no {@code PRINT_IDENTIFIER} provided, parallelism == 1
*
* <p>output string format is "$RowKind[f0, f1, f2, ...]", example is: "+I[1, 1]".
*/
public class PrintRateTableSinkFactory implements DynamicTableSinkFactory {
// 简单修改
public static final String IDENTIFIER = "print-rate";
public String factoryIdentifier() {
return IDENTIFIER;
}
public Set<ConfigOption<?>> requiredOptions() {
return new HashSet<>();
}
public Set<ConfigOption<?>> optionalOptions() {
Set<ConfigOption<?>> options = new HashSet<>();
options.add(PRINT_IDENTIFIER);
options.add(STANDARD_ERROR);
options.add(FactoryUtil.SINK_PARALLELISM);
// 添加到 options
options.add(PRINT_RATE);
return options;
}
public DynamicTableSink createDynamicTableSink(Context context) {
FactoryUtil.TableFactoryHelper helper = FactoryUtil.createTableFactoryHelper(this, context);
helper.validate();
ReadableConfig options = helper.getOptions();
return new PrintSink(
context.getCatalogTable().getResolvedSchema().toPhysicalRowDataType(),
context.getCatalogTable().getPartitionKeys(),
options.get(PRINT_IDENTIFIER),
options.get(STANDARD_ERROR),
options.getOptional(FactoryUtil.SINK_PARALLELISM).orElse(null),
options.get(PRINT_RATE));
}
private static class PrintSink implements DynamicTableSink, SupportsPartitioning {
private final DataType type;
private String printIdentifier;
private final boolean stdErr;
private final Integer parallelism;
private final List<String> partitionKeys;
private Map<String, String> staticPartitions = new LinkedHashMap<>();
private Float printRate;
private PrintSink(
DataType type,
List<String> partitionKeys,
String printIdentifier,
boolean stdErr,
Integer parallelism,
Float printRate) {
this.type = type;
this.partitionKeys = partitionKeys;
this.printIdentifier = printIdentifier;
this.stdErr = stdErr;
this.parallelism = parallelism;
this.printRate = printRate;
}
public ChangelogMode getChangelogMode(ChangelogMode requestedMode) {
return requestedMode;
}
public SinkRuntimeProvider getSinkRuntimeProvider(Context context) {
DataStructureConverter converter = context.createDataStructureConverter(type);
staticPartitions.forEach(
(key, value) -> {
printIdentifier = null != printIdentifier ? printIdentifier + ":" : "";
printIdentifier += key + "=" + value;
});
return SinkFunctionProvider.of(
new RowDataPrintFunction(converter, printIdentifier, stdErr, printRate), parallelism);
}
public DynamicTableSink copy() {
return new PrintSink(type, partitionKeys, printIdentifier, stdErr, parallelism, printRate);
}
public String asSummaryString() {
return "Print to " + (stdErr ? "System.err" : "System.out");
}
public void applyStaticPartition(Map<String, String> partition) {
// make it a LinkedHashMap to maintain partition column order
staticPartitions = new LinkedHashMap<>();
for (String partitionCol : partitionKeys) {
if (partition.containsKey(partitionCol)) {
staticPartitions.put(partitionCol, partition.get(partitionCol));
}
}
}
}
/**
* Implementation of the SinkFunction converting {@link RowData} to string and passing to {@link
* PrintSinkFunction}.
*/
private static class RowDataPrintFunction extends RichSinkFunction<RowData> {
private static final long serialVersionUID = 1L;
private final DataStructureConverter converter;
private final PrintSinkOutputWriter<String> writer;
private final Float printRate;
private RowDataPrintFunction(
DataStructureConverter converter, String printIdentifier, boolean stdErr, Float printRate) {
this.converter = converter;
this.writer = new PrintSinkOutputWriter<>(printIdentifier, stdErr);
this.printRate = printRate;
}
public void open(Configuration parameters) throws Exception {
super.open(parameters);
StreamingRuntimeContext context = (StreamingRuntimeContext) getRuntimeContext();
writer.open(context.getIndexOfThisSubtask(), context.getNumberOfParallelSubtasks());
}
public void invoke(RowData value, Context context) {
if (ThreadLocalRandom.current().nextFloat() < this.printRate) {
Object data = converter.toExternal(value);
assert data != null;
writer.write(data.toString());
}
}
}
}
PrintConnectorOptions
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package flink.stream.connector.print;
import org.apache.flink.annotation.PublicEvolving;
import org.apache.flink.configuration.ConfigOption;
import static org.apache.flink.configuration.ConfigOptions.key;
/** Options for the Print sink connector. */
public class PrintConnectorOptions {
public static final ConfigOption<String> PRINT_IDENTIFIER =
key("print-identifier")
.stringType()
.noDefaultValue()
.withDescription(
"Message that identify print and is prefixed to the output of the value.");
public static final ConfigOption<Boolean> STANDARD_ERROR =
key("standard-error")
.booleanType()
.defaultValue(false)
.withDescription(
"True, if the format should print to standard error instead of standard out.");
public static final ConfigOption<Float> PRINT_RATE =
key("print-rate")
.floatType()
.defaultValue(0.0001F)
.withDescription(
"Controls the printing rate of data");
private PrintConnectorOptions() {}
}
首先在 PrintConnectorOptions 配置里面添加 PRINT_RATE 属性,用来控制随机取样,默认值是 0.0001.
然后在 PrintRateTableSinkFactory 中把 connector 的唯一标识符 IDENTIFIER 改成 print-rate,其实不改也是可以的,只是为了和默认的 Print 做区分.
在 PrintRateTableSinkFactory#optionalOptions 方法里面加入我们添加的属性 PRINT_RATE.
public Set<ConfigOption<?>> optionalOptions() {
Set<ConfigOption<?>> options = new HashSet<>();
options.add(PRINT_IDENTIFIER);
options.add(STANDARD_ERROR);
options.add(FactoryUtil.SINK_PARALLELISM);
options.add(PRINT_RATE);
return options;
}
然后把这个参数传入到下面的 PrintSink 最后传入到 RowDataPrintFunction 里面,最终在 invoke 方法里面添加随机取样的逻辑.
public void invoke(RowData value, Context context) {
if (ThreadLocalRandom.current().nextFloat() < this.printRate) {
Object data = converter.toExternal(value);
assert data != null;
writer.write(data.toString());
}
}
到这里代码就修改完了,非常简单,一共不到 10 行代码.
最后还要把 PrintRateTableSinkFactory 添加到 META-INF/services 下的配置文件中,因为 Flink 是用 Java SPI 机制加载这些 connector 的.
最后来测试一下修改后的 connector,先把打完的 jar 包上传到服务器的 flink/lib 目录下面.创建初始化脚本和 SQL 文件.
init.sql
SET 'parallelism.default' = '8';
SET 'taskmanager.memory.network.fraction' = '0.01';
SET 'pipeline.name' = 'test-print-rate';
SET 'sql-client.verbose' = 'true';
test_print_rate.sql
CREATE TABLE kafka_table (
name string,
age int,
city string,
ts BIGINT,
proctime as PROCTIME(),
rt as TO_TIMESTAMP_LTZ(ts, 3),
WATERMARK FOR rt AS rt - INTERVAL '5' SECOND
)
WITH (
'connector' = 'kafka',
'topic' = 'test',
'properties.bootstrap.servers' = 'master:9092,storm1:9092,storm2:9092',
'properties.group.id' = 'jason_flink_test',
'scan.startup.mode' = 'latest-offset',
'format' = 'json',
'json.fail-on-missing-field' = 'false',
'json.ignore-parse-errors' = 'false'
);
CREATE TABLE print_table
(
f1 TIMESTAMP(3),
f2 TIMESTAMP(3),
f3 BIGINT,
f4 STRING
)
WITH (
'connector' = 'print-rate',
'standard-error' = 'false',
'print-rate' = '0.01',
'sink.parallelism' = '4'
);
insert into print_table
select
window_start,
window_end,
count(name),
name
from table(HOP(table kafka_table,descriptor(proctime),interval '30' second, interval '1' HOUR))
group by window_start,
window_end,
name;
这里用的是上面改造的 print-rate connector,可以通过 ‘print-rate’ = ‘xxx’ 来控制随机取样.
提交任务
sql-client.sh -i init.sql -f test_print_rate.sql
任务提交成功后,先向 kafka 里写入数据,然后到 TM 的 Stdout 里面看下打印的数据.
可以看到数据确实做了随机取样,因为如果用默认的 Print Connector 的话,每条数据都会打印出来,因为 key 都是不一样的.这样打印的数据就会减少很多,当上游数据量非常大时,也不会造成什么问题.
本文来自投稿,不代表从大数据到人工智能立场,如若转载,请注明出处:https://lrting.top/backend/bigdata/6687/