在Docker中快速测试Apache Pinot批数据导入与查询

Pinot 是一个实时分布式 OLAP 数据存储,专为提供超低延迟分析而构建,即使在极高吞吐量下也是如此。如果你还不了解Pinot,那么可以先阅读这篇文章《Apache Pinot基本介绍》,本文介绍如何以Docker方式运行Pinot,在Docker中运行Pinot对于了解Docker的新手来说是最简单不过的了。

拉取镜像

docker pull apachepinot/pinot:latest

或者你也可以指定pinot版本

docker pull apachepinot/pinot:0.9.3

在同一个docker容器中运行所有组件

docker run \
    -p 9000:9000 \
    apachepinot/pinot:latest QuickStart \
    -type batch

随后在浏览器输入:http://localhost:9000,即可看到如下界面

imagea9d7f7c7ff3bfa20.png

上述模式为启动Batch模式的Pinot进程,可以参考这里实践其他的Pinot运行模式。

使用Docker compose在多个容器中运行Pinot进行

docker-compose.yml内容如下:

version: '3.7'
services:
  zookeeper:
    image: zookeeper:3.5.6
    hostname: zookeeper
    container_name: manual-zookeeper
    ports:
      - "2181:2181"
    environment:
      ZOOKEEPER_CLIENT_PORT: 2181
      ZOOKEEPER_TICK_TIME: 2000
  pinot-controller:
    image: apachepinot/pinot:latest
    command: "StartController -zkAddress manual-zookeeper:2181"
    container_name: "manual-pinot-controller"
    restart: unless-stopped
    ports:
      - "9000:9000"
    environment:
      JAVA_OPTS: "-Dplugins.dir=/opt/pinot/plugins -Xms1G -Xmx4G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -Xloggc:gc-pinot-controller.log"
    depends_on:
      - zookeeper
  pinot-broker:
    image: apachepinot/pinot:latest
    command: "StartBroker -zkAddress manual-zookeeper:2181"
    restart: unless-stopped
    container_name: "manual-pinot-broker"
    ports:
      - "8099:8099"
    environment:
      JAVA_OPTS: "-Dplugins.dir=/opt/pinot/plugins -Xms4G -Xmx4G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -Xloggc:gc-pinot-broker.log"
    depends_on:
      - pinot-controller
  pinot-server:
    image: apachepinot/pinot:latest
    command: "StartServer -zkAddress manual-zookeeper:2181"
    restart: unless-stopped
    container_name: "manual-pinot-server" 
    environment:
      JAVA_OPTS: "-Dplugins.dir=/opt/pinot/plugins -Xms4G -Xmx16G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -Xloggc:gc-pinot-server.log"
    depends_on:
      - pinot-broker

将上述文件拷贝到本地docker-compose.yml文件中,执行如下命令启动:

docker-compose --project-name pinot-demo up

查看容器运行状态

docker ps

image8622e9d0f33fe4df.png

同样在浏览器输入:http://localhost:9000,即可看到如下界面

image629719199c297cb3.png

导入批量数据

在上述步骤中,我们已经在Dokcer中拉起Pinot运行环境,接下来便可导入数据进行查询。

进入/tmp目录,执行如下命令:

mkdir -p pinot-quick-start/rawdata
vim pinot-quick-start/rawdata/transcript.csv

在上述新建的csv文件中填入下述数据:

studentID,firstName,lastName,gender,subject,score,timestampInEpoch
200,Lucy,Smith,Female,Maths,3.8,1570863600000
200,Lucy,Smith,Female,English,3.5,1571036400000
201,Bob,King,Male,Maths,3.2,1571900400000
202,Nick,Young,Male,Physics,3.6,1572418800000

新建schema文件

vim pinot-quick-start/transcript-schema.json

填入如下内容:

{
  "schemaName": "transcript",
  "dimensionFieldSpecs": [
    {
      "name": "studentID",
      "dataType": "INT"
    },
    {
      "name": "firstName",
      "dataType": "STRING"
    },
    {
      "name": "lastName",
      "dataType": "STRING"
    },
    {
      "name": "gender",
      "dataType": "STRING"
    },
    {
      "name": "subject",
      "dataType": "STRING"
    }
  ],
  "metricFieldSpecs": [
    {
      "name": "score",
      "dataType": "FLOAT"
    }
  ],
  "dateTimeFieldSpecs": [{
    "name": "timestampInEpoch",
    "dataType": "LONG",
    "format" : "1:MILLISECONDS:EPOCH",
    "granularity": "1:MILLISECONDS"
  }]
}

创建表配置项

vim pinot-quick-start/transcript-table-offline.json

填入如下内容

{
  "tableName": "transcript",
  "segmentsConfig" : {
    "timeColumnName": "timestampInEpoch",
    "timeType": "MILLISECONDS",
    "replication" : "1",
    "schemaName" : "transcript"
  },
  "tableIndexConfig" : {
    "invertedIndexColumns" : [],
    "loadMode"  : "MMAP"
  },
  "tenants" : {
    "broker":"DefaultTenant",
    "server":"DefaultTenant"
  },
  "tableType":"OFFLINE",
  "metadata": {}
}

执行如下命令创建表

docker run --rm -ti \
    -v /tmp/pinot-quick-start:/tmp/pinot-quick-start \
    --name pinot-batch-table-creation \
    apachepinot/pinot:latest AddTable \
    -schemaFile /tmp/pinot-quick-start/transcript-schema.json \
    -tableConfigFile /tmp/pinot-quick-start/transcript-table-offline.json \
    -controllerHost manual-pinot-controller \
    -controllerPort 9000 -exec

得到如下输出:

imageaccb1f4caddc0ae0.png

Pinot 表的数据存储为 Pinot 段。

要生成段,我们需要首先创建一个作业规范 yaml 文件。 JobSpec yaml 文件包含有关数据格式、输入数据位置和 Pinot 簇坐标的所有信息。 您可以复制此作业规范文件。 如果您使用自己的数据,请确保 1) 用您的表名替换成transcript 2) 设置正确的 recordReaderSpec

executionFrameworkSpec:
  name: 'standalone'
  segmentGenerationJobRunnerClassName: 'org.apache.pinot.plugin.ingestion.batch.standalone.SegmentGenerationJobRunner'
  segmentTarPushJobRunnerClassName: 'org.apache.pinot.plugin.ingestion.batch.standalone.SegmentTarPushJobRunner'
  segmentUriPushJobRunnerClassName: 'org.apache.pinot.plugin.ingestion.batch.standalone.SegmentUriPushJobRunner'
jobType: SegmentCreationAndTarPush
inputDirURI: '/tmp/pinot-quick-start/rawdata/'
includeFileNamePattern: 'glob:**/*.csv'
outputDirURI: '/tmp/pinot-quick-start/segments/'
overwriteOutput: true
pinotFSSpecs:
  - scheme: file
    className: org.apache.pinot.spi.filesystem.LocalPinotFS
recordReaderSpec:
  dataFormat: 'csv'
  className: 'org.apache.pinot.plugin.inputformat.csv.CSVRecordReader'
  configClassName: 'org.apache.pinot.plugin.inputformat.csv.CSVRecordReaderConfig'
tableSpec:
  tableName: 'transcript'
  schemaURI: 'http://manual-pinot-controller:9000/tables/transcript/schema'
  tableConfigURI: 'http://manual-pinot-controller:9000/tables/transcript'
pinotClusterSpecs:
  - controllerURI: 'http://manual-pinot-controller:9000'

使用以下命令生成段并上传数据

docker run --rm -ti \
    --network=pinot-demo_default \
    -v /tmp/pinot-quick-start:/tmp/pinot-quick-start \
    --name pinot-data-ingestion-job \
    apachepinot/pinot:latest LaunchDataIngestionJob \
    -jobSpecFile /tmp/pinot-quick-start/docker-job-spec.yml

导入完数据之后即可在前端界面进行查询:

image7b17c7ca6cf28a95.png

image9a4f8063da58f792.png

0 0 投票数
文章评分

本文为从大数据到人工智能博主「xiaozhch5」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://lrting.top/backend/bigdata/pinot/pinot-basic/4364/

(0)
上一篇 2022-04-07 01:54
下一篇 2022-04-07 23:15

相关推荐

订阅评论
提醒
guest

0 评论
内联反馈
查看所有评论
0
希望看到您的想法,请您发表评论x